Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF.
نویسندگان
چکیده
Estrogen rapidly activates the mitogen-activated protein kinases, Erk-1 and Erk-2, via an as yet unknown mechanism. Here, evidence is provided that estrogen-induced Erk-1/-2 activation occurs independently of known estrogen receptors, but requires the expression of the G protein-coupled receptor homolog, GPR30. We show that 17beta-estradiol activates Erk-1/-2 not only in MCF-7 cells, which express both estrogen receptor alpha (ER alpha) and ER beta, but also in SKBR3 breast cancer cells, which fail to express either receptor. Immunoblot analysis using GPR30 peptide antibodies showed that this estrogen response was associated with the presence of GPR30 protein in these cells. MDA-MB-231 breast cancer cells (ER alpha-, ER beta+) are GPR30 deficient and insensitive to Erk-1/-2 activation by 17beta-estradiol. Transfection of MDA-MB-231 cells with a GPR30 complementary DNA resulted in overexpression of GPR30 protein and conversion to an estrogen-responsive phenotype. In addition, GPR30-dependent Erk-1/-2 activation was triggered by ER antagonists, including ICI 182,780, yet not by 17alpha-estradiol or progesterone. Consistent with acting through a G protein-coupled receptor, estradiol signaling to Erk-1/-2 occurred via a Gbetagamma-dependent, pertussis toxin-sensitive pathway that required Src-related tyrosine kinase activity and tyrosine phosphorylation of tyrosine 317 of the Shc adapter protein. Reinforcing this idea, estradiol signaling to Erk-1/-2 was dependent upon trans-activation of the epidermal growth factor (EGF) receptor via release of heparan-bound EGF (HB-EGF). Estradiol signaling to Erk-1/-2 could be blocked by: 1) inhibiting EGF-receptor tyrosine kinase activity, 2) neutralizing HB-EGF with antibodies, or 3) down-modulating HB-EGF from the cell surface with the diphtheria toxin mutant, CRM-197. Our data imply that ER-negative breast tumors that continue to express GPR30 may use estrogen to drive growth factor-dependent cellular responses.
منابع مشابه
Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis.
Estrogen triggers rapid yet transient activation of the MAPKs, extracellular signal-regulated kinase (Erk)-1 and Erk-2. We have reported that this estrogen action requires the G protein-coupled receptor, GPR30, and occurs via Gbetagamma-subunit protein-dependent transactivation of the epidermal growth factor (EGF) receptor through the release of pro-heparan-bound EGF from the cell surface. Here...
متن کاملBisphenol A at a low concentration boosts mouse spermatogonial cell proliferation by inducing the G protein-coupled receptor 30 expression.
Bisphenol A (BPA) is one of the most prevalent chemicals in daily-use materials, therefore, human exposure to BPA is ubiquitous. We found that low concentrations of BPA stimulate the spermatogonial GC-1 cells proliferation by G protein-coupled receptor 30 (GPR30)-mediated epidermal growth factor receptor (EGFR)-extracellular regulated kinase (ERK)-c-Fos pathway. However, through the same pathwa...
متن کاملLysophosphatidic acid promoting corneal epithelial wound healing by transactivation of epidermal growth factor receptor.
PURPOSE To identify the underlying mechanisms by which lipid mediator lysophosphatidic acid (LPA) acts as a growth factor in stimulating extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3K) during corneal epithelial wound healing. METHODS Epithelial debridement wounds in cultured porcine corneas and scratch wounds in an epithelial monolayer of SV40-immortalize...
متن کاملThrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways.
Protease-activated receptors (PARs), newly identified members of G protein-coupled receptors, are widely distributed in the brain. Thrombin evokes multiple cellular responses in a large variety of cells by activating PAR-1, -3, and -4. In cultured rat astrocytes we investigated the signaling pathway of thrombin- and PAR-activating peptide (PAR-AP)-induced cell proliferation. Our results show th...
متن کاملSignaling mechanisms of heparin-binding epidermal growth factor-like growth factor in vascular smooth muscle cells.
A host of growth factors have been implicated in vascular pathologies; one such factor is heparin-binding epidermal growth factor-like growth factor (HB-EGF). Although HB-EGF has been shown to stimulate mitogenesis and chemotaxis of vascular smooth muscle cells (VSMC), its signaling mechanism remains undefined. In this study, we examined possible signal transduction pathways by which HB-EGF lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular endocrinology
دوره 14 10 شماره
صفحات -
تاریخ انتشار 2000